
DTIC FILE COpy

q.

MORE EFFICIENT BOTTOM-UP TREE PATTERN MATCHING

J. Cai
R. Paige

DT IC R. Tarjan

S ELECTE CS-TR-268-90

JUL 0 5 1990 May 1990

DrS"I!!).ION STAT..M A

Approved foT pu- iic release

q o 0'7 3 ,

More Efficient Bottom-Up Tree Pattern Matching

J. Cai and R. Paige' and R. Tarjan 2
Dept. of Computer Science Dept. of Computer Science and NEC Research Institute
NYU/Courant Institute Princeton University 4 Independence Way
New York, NY 10012 Princeton, NJ 08540 Princeton, NJ 08544

ABSTRACT

Pattern matching in trees is fundamental to a variety of programming
language systems. However, progress has been slow in satisfying a pressing need
for general purpose pattern matching algorithms that are efficient in both time and
space. We offer asymptotic improvements in both time and space to Chase's
bottom-up algorithm for pattern preprocessing. Our preprocessing algorithm has
the additional advantage of being incremental with respect to pattern additions and
deletions. We show how to modify our algorithm using a new decomposition
method to obtain a space/time tradeoff. Finally, we trade a log factor in time for a
linear space bottom-up pattern matching algorithm that handles a wide subclass of
Hoffmann and O'Donnell's Simple Patterns.

1. Introduction

Pattern Matching in trees is fundamental to term rewriting systems [11], transformational
programming systems [4,7,18,22], program editing and development systems [6,13], code gen-
erator generators [9,171, theorem provers[14], logic programming optimizers that attempt to
replace unification with matching[16], and compilers for ML[21], Haskell[12], and a variety of
functional languages with equational function definitions. However, this problem seems to be
extremely difficult. The best known space-efficient top-down algorithm to locate all occurrences
of a pattern tree of size I in a tree of size n takes 0(n '.5polylog(l)) time, a recent result due to
Kosaraju [15], which is barely better than the naive 0(ni) algorithm. Bottom-up pattern matching
seems to be even more difficult than top-down matching and is of special practical importance. In
a seminal paper Hoffmann and O'Donnell presented bottom-up tree pattern matching algorithms
that were highly efficient in time but required excessive space [10] both in theory and practice (see
Chase's empirical data [5]). Hoffmann and O'Donnell's work has stimulated a number of papers
offering heuristic space improvements [2,3,5,19], and Chase's method has aroused considerable
attention [5]. However, none of these papers offer theoretical improvements or promising 0
space/time tradeoffs. El

1. Pan of this wod was done while Paige was a summer faculty member at IBM T. J. Watso Research Center. This work
is also partly based on research supporled by the Office of Naval Research under Contract No. N000 4-87.0461.
2. Research at Princeton University partially supported by DIMACS (Center for Discree Mathematics and Theoretical
Computer Science), a National Science Foundation Science and Technology Center. grant NSF-STCSS-0964. and the
Office of Naval Research. contract N0014-87-K-0467. .- des

fA~or

-2-

In this paper we present two new theoretical results in bottom-up tree matching.

1. At the end of his CAAP '88 paper [3] Burghardt called for an algorithm that could prepro-
cess pattern trees incrementally as worthwhile future research. Such an algorithm is needed in the
RAPTS transformational programming system [4], because incrementally modifying systems of
rewrite rules is a frequent activity, and preprocessing full sets of patterns is highly expensive.

In this paper we present a modification to Chase's algorithm so that its costliest task, prepro-
cessing, can be achieved incrementally with respect to additions and deletions of patterns. When
our algorithm is applied repeatedly to solve nonincremental preprocessing by adding one pattern at
a time starting from the empty set, it runs asymptotically better in time and space than Chase's
algorithm.

2. In bottom-up pattern matching, the main difficulty that sorely needs to be overcome is
space utilization. We present an algorithm for a subclass of Hoffmann and O'Donnell's Simple
Patterns that runs in 0(i) space overall and 0(log 1) time per step, where I is a parameter related to
the number of input patterns. Previous bounds due to Hoffmann and O'Donnell are 0(12) time and
space for an algorithm tailored to binary Simple Patterns (which our subclass properly includes)
and 0(1Q 1) space with 0(1) step time for an algorithm handling all Simple Patterns, where
kmax is the maximum arity of a pattern. Thus, we offer a quadratic space improvement over the
latter algorithm for binary patterns and even more dramatic improvement for patterns of greater
arity. Our space compression is obtained by applying persistent data structures in a new way.

2. Bottom-up pattern matching

Hoffmann and O'Donnell [10] define patterns inductively as follows:

Definition: Given an alphabet of one distinguished variable v and function symbols f with
fixed arity A(l), then the set of patterns is the smallest set of terms that include (i) v, (ii) constant c
if c is a function symbol with arity 0, and (iii) f (p1. " ", pa), which we call an f-pattern, if f is a
function symbol of arity k and p 1, ",k are patters.

They also define pattern matching as follows:

Definition: Pattern P1 is said to be more general than pattern P2, denoted by Pt IP2, iff
either (i) p I is v, or (ii) p I is f (x 1. "" - Xk), P2 is f (Y,1 I"" -- , yA:) and xi 2! yi for fi =1, .-. , k.

Ifp P2, we also say that p I matches P2 or that [p I -P2] is a match. The set of subexpres-
sions, or subpatterns, of p is denoted by sub(p). A slightly more general form of the main pattern
matching problem considered by Hoffmann and O'Donnell is:

Problem(Multi-pattern matching): Given a set P of patterns and a pattern t called the subject,
find the set MPTM (t) (([p, q]: p e P. q e sub(t) I p > q) of all patterns in P matching subpat-
terns of t.

As the preceding notation suggests, bottom-up solutions presented by Hoffinann and
O'Donnell and Chase treat the set P of patterns as fixed and the subject t (which for them has no
variables) as the only parameter that can vary. In a bottom-up strategy to solve the multi-pattern
matching problem, a complete set MPTM (q) of matches is found for each subpattern q of t without
reference to any subpattern of t that properly encloses q.

In order to explain these algorithms, we need to first present a few definitions and notational

conventions.

Definition: If P is a set of patterns, then the pattern forest PF of P is the set of subpatterns of
all the patterns in P.

-3-

Definition: If PF is the pattern forest for a set P of patterns and t is the subject, then the
match set MS (t) for t is defined by the rule MS(t) = (q E PF I q > t).

The main idea underlying Hoffmann and O'Donnell's bottom-up algorithm is the following
equivalent recursive definition:

MS(v) = (v)
MS(c)= (v), when constant c 4 PF

(v,c), when constant c e PF
(1) MS(f (t1 , ..., tt))= f(q 1 ", qk)e PF I qi e MS (ti),i = 1,--., k) v (v)

After determining match sets for constants and variable occurring in the subject t, the main task of
Hoffmann and O'Donnell's bottom-up algorithm is to identify the match set for each subpattern
f (t 1. "-', tt) of t based on the match sets for ti, i - , = , k. This is achieved by solving
expression (1), which we call the Basic Bottom--Up Step.

Consider a multi-pattern matching problem instance with pattern set P, pattern forest PF, and
subject t. We will use the following parameters throughout this paper

n = length of t
m -number of match sets for P
1= IPFI
o = IMPTM(t)I
kmax = maximum arity of any function appearing in PF

In order to compute Step (1) and print the set MS(f (ti, :t))i P of patterns that match
f(t, "", t) in time O(k+ IMS (f(t, , tt))*, i P I), Hoffmann and O'Donnell preprocess
the patterns in P to

. encode each pattern in PF as a distinct integer from I to 1, and represent patterns as
trees in the obvious way (implemented in compressed form as dags);

Ii. compute all match sets, and encode each such set as a distinct integer from I to m;
iii. compute the subset of patterns in P belonging to the i1A match set for i = 1 M;
iv. compute a transition function -t for every k--ary function symbol f occurring in P so

that ci(ms 1, ' Ms) = MS (f (l i, " t) whenever msj = MS (tj) for j = I .., ,
= (v), and r, = (v, c) if c is any constant appearing in PF; transition maps rf are
implemented as multi-dimensional arrays accessed using integer encodings of match
sets.

After preprocessing the patterns in P Hoffmann and O'Donnell's algorithm solves the
multi-pattern matching problem by repeatedly solving Step (1) from innermost to outermost sub-
pattern of t. Their worst case time is 0 (n + o) after preprocessing P. The transition table tf for
each k-ary function symbol f appearing in PF uses 0(m k) space, where the number m of match
sets can be 11(21), which is expensive in practice. Their rough bound on preprocessing time is
o (12 m"=).

Several approaches seem reasonable to overcome the large preprocessing and space costs.
Chase [5] saves space in the transition function by eliminating some redundancy. Hoffmann and
O'Donnell restrict the class of patterns to the Simple Patterns for which m is always small - essen-
tially 0 (1). For Simple Patterns that are further restricted to have arity less than or equal to two,
Hoffmann and O'Donnell give an algorithm where match sets can be avoided entirely.

In the next section we show how to make Chase's preprocessing algorithm incremental and
asymptotically better in both time and space. We also present a general problem decomposition
technique that allows the algorithm to be tailored according to a space/time tradeoff. After that, we
show how to improve the space and time for Hoffmann and O'Donnell's algorithm for binary

-4-

Simple Patterns and how to extend the algorithm to a wide subclass of Simple Patterns with unres-
tricted arity.

3. Incremental preprocessing

Chase was able to improve Hoffmann and O'Donnell's method by exploiting the deeper
structure of the pattern set P to reduce the size of transition functions[5]. Chase's heuristic
preserves the 0 (1) per step matching time.

Let PF be the pattern forest for P. and assume that it contains variable v. For each function f
appearing in PF, define projection r = (ci: f(c 1 ,... ,ck) e PF) to be the set of patterns appear-
ing as the i'h parameter of some f-patter in PF. Chase made the crucial observation that the basic
Bottom-Up Step (1) could be rewritten equivalently as

(2) MS(f(t 1 , "", t))=[f (c , --,ck)e PF I c E MS(ti)nr f,i= I .. k) u (v)

and that the size of the finite function (i.e., number of pairs stored in its graph representation)
defined by the rule OMS (t 1) n r 1, ", MS (t) vri) =MS (f (t, " tk)) must be no greater
than Hoffmann and O'Donnell's transition function r. The essential idea may be simply put: for
any two finite functions f and g where f is defined by the rule flh(x)) = g(x), we know that I)5 < IgI
as long as h is not one-to-one. Chase also ,,rovided extensive empirical evidence to show that Of is
much smaller than f in practice.

Chase's bottom-up step involves two substeps. First each Hoffmann and O'Donnell match
set MS (ti) is turned into the smaller Chase match set VLtMS (ti)) = MS (ti) r) r for i = 1 .., k.
Next, Chase's transition function Of is used to obtain the Hoffmann and O'Donnell match set
Oi(g) (MS(t 1)), ILMS(tk))). Chase's implementation uses integer encodings for both kinds of
match sets.

We will give an abstract algorithm that incrementally constructs functions pL and 0 and runs

asymptotically faster than Chase's algorithm. Since our algorithm is specified in terms of set and
map operations, it is useful to discuss some notations and implementation details. In addition to
standard mathematical notations it will sometimes be convenient to use certain unconventional dic-
tions. Expression A with x abbreviates set element addition A u [x) (where in this context A is
interpreted as the empty set if it is undefined), and assignment A op := x abbreviates A := A op x.
If f is a binary relation, then domain f= (r. (x,y] e f), range f= (y: (x,y] e f), f(x) denotes func-
tion application (undefined if f is multivalued at x or if x 4 domain J), and fix) denotes mul-
tivalued map application with value (y: [x,y] e fJ).

By a Set Encoding Structure (abbr. SE-Structure) we mean a triple (U, A, Q) with finite
universe U, primary set A c 2V, and secondary set Q r U. SE-structures support the following
five operations:

1. (create) Add anew set (z) to A, and possibly add z to Q, where z e U, i.e.,

A wth:- z)
Q wttb:, 1

2. (replace) Replace a e A by new set a with z, which is denoted by,

a witb:- z
3. (add) Add new set a with z to A, and perhaps add z to Q, where a e A and z e U; that is,

A wit: a wlthz
4. (query) Retrieve set a (Q, where a e A.

-5-

5. (index) Retrieve set a e A I c e a), where c : U.

We will implement SE-structures using the following data structure called an SE-Tree (see
Fig. 1). Each set a, belonging to primary set A is associated with a unique node x in the SE-tree;
that is, x 'encodes' a,. Each node x in the tree will be uniquely associated with a set a, g U, which
may or may not belong to A. If a, and ay am sets associated with tree nodes x and y, then x is a
descendent of y in the tree only if a, c a. Each node is implemented by a record with five fields:
a right sybling pointer, a leftmost child pointer, a Q-list pointer to a subset of Q, a pointer to the
nearest ancestor with a nonempty Q-list, and a membership bit indicating whether the node
corresponds to a set belonging to A or not. For each node x, which represents set ax, Q-lists for
nodes along the path from x to the root are mutually disjoint, and their union stores the set a, n Q.
Sets U and Q are implemented by a list of records. The record corresponding to each element
c e U has a bit indicating membership in Q and a pointer to a list (called the c-list) of tree nodes x
closest to the root such that the associated set a, contains c.

A- right left Q-list Q numeric
member sibling child ancestor or code U Q U-list

Fig.1. SE-structure(U, A, Q)

The create operation (A with:= fz); Q with:= z) is implemented by adding a new tree root
with empty sybling, child, and Q-list ancestor pointers, membership bit on, and Q-list containing z
if it belongs to Q and empty if not. We also add a pointer to the newly created record in the z-list.
This operation takes 0(1) time.

Implementation of replace a with:= z requires two cases to be considered. In the first case,
called a nondestructive replace, the tree node x associated with a has a nonnull child pointer. Then
(i) unset the membership bit in x and create a new tree node y as a child of x, (ii) if the Q-list in x is
nonempty, then make the Q.list ancestor in y point to r, otherwise, make it point to the same record
that the Q-list ancestor in x points to, and (iii) set the member bit in y. In the second case, where x
has no children, we reuse x to represent the new set a with z. In this case, called a
destructive replace. we assume that nodes x and y are the same. In either case, if z belongs to Q,
add z to the Q-list fory. Fnally, add y to the z-list. This operation takes 0(l) time.

To implement addA with:= a with z we letx be the tree node associated with set a. Create a
new tree node y associated with set a with z, and make y a child of x. If the Q-list in x is
nonempty, then make the Q-list ancestor in y point to x, otherwise, make it point to the same record
that the Q-list ancestor in x points to, and set the member bit in y. If z belongs to Q, add z to the Q-
list fory. Finally, add y to the z-list. This operation takes 0(1) time.

Operation query a n Q is implemented as follows. If x is the tree node associated with a,
then retrieve the elements in each Q-list along the path starting from x following Q-list ancestors.

-6-

The Q-lists along this path are disjoint. This operation takes O(a r QI) time.

Finally, SE-trees support a straightforward implementation of index (a c: A I c e a). Form a
list of records x, where set a, belongs to A, occurring in subtrees rooted in nodes contained in the
c-list. This operation takes O(l(a e A Ic e a)i) time, because the number of nodes x in these sub-
trees such that a, J A must be strictly less than the number of leaves in these subtrees (and all
leaves represent sets belonging to A).

In order to analyze the complexity of SE-trees, we give the following definitions. For each
node xin an SE-tree, define path (x) tobe the set of nodes in the tree path from the root to x.Define
weight (x) to be the number of elements u e U whose u-list contains x. Define
W,(A) = 1 weight(x) to be the total weight of all the nodes in the tree that implements set

z is a gree node

A. Letting des(x) denote the number of tree descendents of x, we can define
Wp(A) = T des(x)xweight(x) to be the sum of the weights of every tree path. Clearly,

x is a tree node
IA I :SW(A)!SW,(A) < 2 F Ia I. Usually, W.(A) is much smaller than Wp(A).

aeA

The total space required by an SE-tree is 0 (W,(A)), and any sequence of h of the first three
operations above takes O(h) time and space. Note that a naive representation of the set A will take

SO(Wp(A)) space.
We will consider useful variants of SE-structures that require minor alteration to the preced-

ing implementation and do not affect the stated complexities. A Simple SE-structure is one with no
secondary set. A numeric SE-structure is one in which the set elements of the primary set A are
identified by natural numbers 1,....AI (cf Fig. 1). Numeric SE-structures have special importance in
connection with our second abstract datatype described next.

The main abstract datatype used in our pattern matching algorithm is the SE-Map, which is a
partial function f. A--B from a domain set A to a range set B, where A and B are the primary sets
of two SE-structures. SE-maps support the following two map operations:

1. (modify range) Given a set A and an element z, where A g A, and z does not belong to
any set in B, add z to f (x) for each x belonging to A. This operation is denoted by,

(forx e A)
ftx) with:= r

end
2. (modify domain) Given a set x in the domain off and an element z, form a new domain

set x with z and map it underfto the old image f(x). This operation is denoted by,

fix with z) := Aix)

Our basic implementation of SE-maps f. A.-+B uses SE-tree implementations for A and B as
described above. In addition, for each pair [a ,b] belonging to map f, if x and y are the records
associated with sets a and b, then x stores a pointer to y, and y stores the size of the preimage set
f-I (b). If A is pan of a numeric SE-structure, it is sometimes useful to implement domain f as an
aray accessed using the numeric code of an A element as shown in Fig.2. We also make use of a
multi --dimensional SE-map in which the domain is the cartesian product of primary sets of SE-
structures.

To implement modify range, (for x e A) Atx) with:= z end, we search through records associ-
ated with elements of A, and handle these elements according to three different cases. (1) If there
are elements of A not belonging to the domain of f, we augment B with a new set {z) using a create

-7-

operation and add the appropriate record pointers and counts.

dornin fpreimage
domainf range f count B-fields

array

i is numeric code forx e A

Fig.2. SE-map f. A- B

(2) For each range element y e A] whose preimage is entirely contained in A, we simply add z
destructively to y using a replace operation. Nothing mor is necessary, since B is modified impli-
citly. (3) For each element y e f[A] not handled in case (2), we execute an add operation B with:=
y with z, relink each element in A n f-1 (y) to the new set y with z, and modify preimage counts.
The total cost of this operation is O(AI).

The implementation of modify domain f(x with z) := ftx) depends on whether or not set x is
modified destructively using a replace operation to obtain the new set x with z. If x is modified
destructively, then the implementation is vacuous, since all operations including the modification
to A are implicit. However, if x is modified nondestructively, then we need to link the new domain
element x with z to the old range element Jfx) and increment the preimage reference count, which
takes 0(I) time.

By an easy counting argument using the preceding analysis, we obtain the following result,
which is central to the analysis of our incremental preprocessing algorithm.

LEMMA 1. Any sequence of intermixed modify range and modify domain operations takes
0 (W.(A)+W.(B)) time and space, where A andB are at their final values.

Let F be the set of function symbols appearing in PF. For each function fe F, let A (f) be its
arity. Let r be the set of Hoffmann and O'Donnell match sets. From the above discussion, we
know that the following equations hold:

r= ((v, s):se PF I s ia leaf) uv /range0f:f e F I A(f)>O
ni = (ci: f (cl, "",cA:)e PF}

= [m, m rli: m e r)
Of= (I[mI..... mA], mJ: ml erange , mk range 91f

where m = f(cl, "' ,ct) c PF Icie mji=l...,k} U (v)

Because the preceding equations contain a cyclic dependency in which r depends on both PF and
), g± depends on r, and 0 depends on g and PF, it would seem that a costly fixed point iteration is

needed to maintain these equations when PF is modified. Fortunately, this can be avoided with
careful scheduling.

The algorithm also depends on a careful logical organization of the data into SE-structures
and SE-maps. Let C: represent Chase match sets forfe F and i=l,...A(J). Then (PF, 1, P) is a
numeric SE-structure and (PF, Cr, .) are Simple numeric SE-structures forfe F and i=l,....A(J).
We also have the following SE-maps: jir: r-+ C for fe F, iil,....Af), and Of:
C x ...×c(f)-.+ r for feF. Fig.3 describes the data structures used to access the main SE-

-8-

structures

and SE-maps shown in Fig.4.

F arity Hl A 0 Ilf [PFI

. - Of

domain'Lf , j jrn ,.
array of bit vectors

F nuderichdrn P. ... (j is numeric code for q e PF)F coe children r PF-Hist k

q-list q-lst array of range f-lists

r range p

Fig.3. Core data structure

It is useful to explain our incremental algorithm in terms of three cases.

(case 1) Assume, first of all, that the set of patterns P is set to empty. It is also convenient to
assume that pattern forest PF always contains v. Then we can initialize variables r, Ii, g, and 0 as
follows:

PF:= (v)
r:= (v))
n:.{
k:= ()
0. := (v)

Next, suppose that P is augmented by a new pattern p. In order to reestablish PF, we add to
PF those subpatterns of p not already in PF in an innermost-to-outermost order. Because of the
order in which updates are scheduled, we know that immediately before a subpattem q of p is
added to PF, either q is a leaf or all the subpattems of q except for q itself are already in PF. More
importantly we know that q is not the subpattern of any other pattern belonging to PF.

(case 2) Suppose PF is augmented with a constant symbol c. In this case, we can maintain the sys-
tem of equations by executing the following code just before the modification PF with:= c:

rwith:= (v) wltbc
COMMENT: Perform a modify dom operation on i

(for U.f,m] 4E ((v)})

IL((vlwith c) :- IL(v))
end

. :- fv, C)
To implement the loop efficiently, for each match set m e r we maintain a single doubly linked
list threading each occurrence of m within domain I4' forfe F,i=l,...,A (f).

-9-

(case 3) The third and more difficult case to consider is when PF is augmented with pattern
f (ti, -'" ,tk), where k>O. Below we describe how to propagate modifications to each of the vari-
ables r, n, IL, and 0 separately. Recall that each of the sets r and range ILt, f e F, i = L..A (f'
will be implemented as SE-trees.

Of

Z t is numeric cmod
form E r ,

numeric SE-tree(PF, 1, P) k-dimentional SE-map (ith coordinate

accessed using numeric code from range 9)

domain gf t

____ ____ ____ ____ ___Chase Codes

Ill numeric simple SE-tree(PF, range g},.)

array of SE-maps

Fig.4. Data structure for Of and ItL,

I. Modify n1" before the modification PF with:=f Q 1, t):

(forj = ..,k)
if ij flf then

11j wtth= :
end

end

2. Perform a modify range operation on g immediately prior to the modification ln.
with:= tj of step 1:

(for me r I IIe m)
,Im) With:= tj

end

As discussed in SE-tree operation 5, we can use the tj-list to retrieve the set
(me r I tjCi m).

3. Perform a modify domain operation on Of prior to the modification Ip(m) with:= tj of
step 2 if the modify range in step 2 was nondestructive:

(for Ira,.. * .. -... Md] a domato Of I nj = jt(m))

end

Here(mi, ... ,mj withtj, *..,n -0$m, *,m, -.. ,m),becausethepattem
f Q1, -. ', tk has not yet been added to PF, and so no f-pattem in PF has tj as its
jah child. We can speedup the search by using the index ([mi,4m 1, . ..]:
[m 1,... , mkI e Of}. Maintaining all k such indexes forf along with Of does not change
the overall asymptotic time or space.

.10-

4. Perform a modify range operation on Of just before the modification PF
with:=f (t1 , - " ,tt) and after the preceding three steps:

(forml erange L} ... emt range JL I t1 EmI lkem&)

If (in1 . m] 4 domain Of then
ef(ml ,,--) := (V)

end
O(ml . .n 1) wtb:=f (tx. • ,)

end

It is important to observe that range gL, is nonempty for i=l,...,k because of steps 1, 2,
and 3. Again, we can use the tj-list to search through the sets (mj e range I It i E mi)
instead of the potentially much larger sets range gt ,j=l,..,k. However, this step contains
a new operation to create a k-tuple [m 1 ,... , mk] and locate it in the domain of Of. Hash-
ing is a practical solution that preserves the Lemma I space complexity but makes the
time randomized. This would also make the Bottom-Up Step 0(1) randomized time.
Our current implementation uses this approach. Another way of preserving space com-
plexity at the expense of time is to use a balanced search tree; e.g., a red/black tree [23].
Access time is then O(log idomain 0?), and so is the Bottom-Up Step. Like Chase we
can also use a large table to store Of, which doubles its size and reorganizes whenever it
overflows. If each new array is allocated in unit time using the solution to exercise 2.12
of Aho, Hopcroft, and Ullman's book[I], then the Lemma I time complexity is preserved,
but the run-time space requirements for Of are increased to be the same as Chase.

5. Modify r prior to the modification O(m ,.. . ,mk) with:=f (t1 , -'" ,tk) of step 4 if the
modify range operation of step 4 was nondestructive:

rwifth.-- (ml. ""-, r) with f(t 1, -- ,1t)

Since f (ti, .-. ,t) is a new subpattem, no other subpatteri in PF has f (t 1 , • • ,tk) as a
subpattern. Thus no further modification is needed for rl.

6. Perform a modify domain operation on t just before the modification r
with:=0(m,, -"-,mk)withf(t1,..,tk)ofstep5:

(for OUg,ml 6 W~ej/mi... ma])
14,(e/m,. . . , m) wtb f (i1 :)) := ii,(o m1. ..-. ,,,))

end

Observe that within the preceding code ,J(ml, ""., mk) with f(tl, ,'tk)) =
IJ(Of(ml, "t, me)),becausef (tl, '"",tk) i. The implementation is the same as in
case 2.

Now we compare the time and space complexity of Chase's algorithm and our algorithm.

THEOREM 1.

1. For each m e domain L., wherefe F,J =I..A (f), Chase's algorithm computes gflm) in

0(min(I m I, Ill n) time, whereas our algorithm takes O (I g Y(m) I) time.

2. For each Im1, -"", m] in domain Of, Chase's algorithm computes Oj(m1, -,m) in
fl(min(I PF I,1 m I x ... x mk 1)) time, whereas our algorithm takes O (IO(m 1,, -.. , mk) I) time.

3. We use O ,(r)) auxiliary space to represent the set r, whereas Chase uses D(Wp(I))
space.

4. To represent the range of 4, we use O(W,(range g±)) auxiliary space, whereas Chase

uses I,(W,(range :4)) space.

-11-

Proof Sketch) In both algorithms, the time complexity is dominated by the time needed to
construct the tables p. and Of, where fe F and j =1..A (f).

I. For each m e domain Rif, Chase's algorithm computes l±1{m) by intersecting mn and nI',
and thus takes f(min(lm I, IrlI)) time. By Lemma 1, we spend O (I gym) I) time to establish the
value of A4(m).

2. For each [i 1 , " , mk] in domain 0, Chase's algorithm computes 0{m1, --', ink) by
evaluating the set f(cl, "", ct e PF I [¢c, "",] e mi x x mt) naively and thus takes
D(min(IPF I, ImI x .." ×m I)) time. In our algorithm, the initial value 0$(m 1 , "", mk) is Iv)
by default. Then it gets new values in step 3 by copying, and increases one -lement at a time in
step 4. Thus we spend O(1Oj(m1, ".., mk) 1) time to establish the value of 0J(m 1, O, mr).
Usually 0/n(m , "", ink) is much smaller than either PF or m I x x mk.

3 and 4. Follows from Lemma I.

We briefly mention that deleting patterns from P can be handled much like pattern addition,
except that scheduling pattern deletion from PF is in an outermost-to-innermost subexpression
order. Further, a pattern is deleted from PF only if its parent is not in PF. The deletion algorithm
follows the same logic as the addition algorithm but in a backwards order to undo the effect of
addition. Details will be provided in a fuller version of the paper.

4. Space/Time tradeoff
In Chase's algorithm, for each function symbol fe F of arity k, the space required for the Of

table could be fQ(2 1k). Here we give a method that decomposes Of into p tables with worst case
overall space 0 (p (2'k'P)) but leads to time 0 (p) to solve the Basic Bottom-Up Step.

Let PF be partitioned into p disjoint equal size sets PF, ,...,PF,, and consider equations,
nifj = C,: f (C I, ...,Ck) E Ppj)

J.Lj - {Irm, m n %l.,i]: m e r)

0,.= {[[mn.... 1, m, m]:mI e range tj, ., mk e range gk.j

where m =f (c,'",ck) e PFj Icie m 1,i=l...,k) u Iv)

If MSi = Ofi(pL.,i(MS (t 1)) ,..... ,i(MS (t))), then we can compute disjoint unions MS(f (t , ...,tk))

=MS1 u ... u MSp in 0 (p) time.

Consider the space required by this approach. If r , = I range ;t}j 1, then r4 = 0(2 n fJI) =
0 (2IPFJI) = 0(2"P), and IOrjI = 0(rfj.x...xr) -0 (2tk"P). Thus, the total space storing the p

match tables for function symbol f is 0 (p (2 WP)), which for p > I is asymptotically better than
Chase's algorithm in the worst case.

The space required by each 1i table is always I ri. Thus the total space for the tables i *j,
i=l..k, j = 1..p is now pk I r1, and the total space for the g, and 0 tables for function symbol f isIk
0 (pk I rl +p (2 P)). When p = log(k I ,"1)I we obtain the approximate minimum

log(kg I)i

To further reduce the size of p tables, we can split each g.Lj table into p subtables gy), ,
:=I.,, with domain x±r' = f XrPF,:xe r). Then for x e 1, we have tfj(x) -
g),c(x r) PF1) v ... u g'yf(i r) PF,)), which can be computed in p time. This increases the time

per step to 0 (p2).

-12-

The total size of the p subtables is now bounded by O(p2t1P), and the total space for the gt
and 0 tables for function fis O(4 p 22"P +p 2 W'P). Since this approach is meaningful only for step
time complexities better than 0 (l), i.e., p = 0 (1112), the best upper bound we can get in this case is

0(11122 ck" 2) for some constant c. This result also indicates that this approach is useful only
,1/2

when I r 3- 21

In a practical implementation it is not necessary for PF to be partitioned into disjoint equal
size subsets. For example, we can let PF1 be the set of patterns that am not children of any pat-
tern, PFi be the set of children of patterns in PFi-1 not contained in PFj, where
i = l..maximum height of patterns, j < i. Then the tables IL? can be omitted for t > j-1. Alterna-
tively, we can let PF be the set of all children of patterns in PF.-1 . Now the size of each subset
may grow, but the tables 4j can be omitted for all t *j-1. It is an interesting question how to
find a partition of PF that minimizes the table size for a fixed per step time bound.

5. Match set elimination

Hoffmann and O'Donnell [10] considered two subclasses of patterns for which the prepro-
cessing and space costs for bottom-up multi-pattern matching are greatly reduced.

Definition: A set P of patterns is Simple if for every two distinct patterns p, q e PF, either
(1)p < q,(2)q <p, or(3) 3 subject t I t5qandt5p.

For Simple Patterns P Hoffmann and O'Donnell observed that the partial ordering (PF, <)
could be represented by a directed tree (called a subsumption tree) with v at the root (assuming that
v occurs in P). Each match set equals the set of patterns along some path in the subsumption tree
from a node to the root. And every path from a node to the root determines a match set. Thus,
there are ordy I match sets, and each one can be represented by its minimum pattern. For a func-
tion f of arity k, the transition table i uses 0 (1k) space, a great improvement over the general case
but still expensive. Hoffmann and O'Donnell also argue that most sets of patterns they have
encountered in rewriting systems are Simple or can be turned into equivalent Simple sets.

Hoffmann and O'Donnell also looked at a subclass of binary Simple Patterns; i.e., Simple
Patterns in which the maximum arity of any function is two. Although greatly restricted, this class
is interesting, because conventional arithmetic and operations in combinatory logic have arity less
than or equal to two. Also, Hoffmann and O'Donnell showed that naive transformation of patterns
with arity greater than two into binary form sometimes but not always preserves the Simple Pattern
property. For binary Simple Patterns they gave an algorithm requiring no transition tables, btn
uses 0(12) space, 0 (Ih2) preprocessing time (h is the longest path in the subsumption uee), and
0(h 2) time instead of an 0 (1) time for Step (1).

We will give a bottom-up algorithm for binary Simple Patterns (which extends to a subclass
of Simple Patterns with arbitrary arity) with 0 (1) space and 0 (log 1) time per step. Our Prepro-
cessing time is the same as that of Hoffmann and O'Donnell. The algorithm makes use of persis-
tant search trees [20], and we expect it to be fast in practice.

Let PF be the pattern forest for the set P of patterns, and let T be its subsumption tree. Recall
that for Simple Patterns each match set can be represented by the unique minimum pattern in the
set. If pi represents the match set for subpattern t, of the subject, i = I .. k, then the metch set for
f(ti, "", tk) is represented by the pattern determined by the following formula:

(New Bottom -Up Step):
(3) cl n / ({v) u P(ql, e qk) E PF I qiam Pi, i= I .. k)

We call pattern f (p 1. ",pt) the search argument for Step (3).

-13-

Consider any binary function f appearing in PF, and let f (p 1, P2) be the search argument for
Step (3). (We will not discuss unary patterns and constants, which are simpler subcases.) We want
to analyze (i) the worst case cost of performing Step (3); and (ii) the auxiliary space while execut-
ing Step (3).

An important observation is that, unlike patterns p I and P2, search argument f (pI, P2) may
not belong to the subsumption tree T! Consequently, if we let I denote the unique maximum pat-
tern, and if we define relation R = ([x, y]:f(x, y) e PF) u ([1,1]), then we can replace Step (3)
for search argument f (p 1, P2) more conveniently by,

(4) min / (ix, y] e R I x >p, andy >P 2)

Expression (4) can be computed by locating the pair of nearest ancestors belonging to R of
nodes PI and P2 with respect to subsumption tree T. This characterization is meaningful because
of the following proposition.

Proposition: If ix 1, y l] and ix2 , y 2] are any two pairs in R and x I < x 2, then Y2 it Y .
Proof Otherwise, P would not be Simple; i.e., we would have f (xI, Y2) <f (xl, yl) and

f(xl, Y2) <f(x2 , Y2).
In order to compute (4) efficiently, the difficulties of two dimensional ancestor testing and

searching within partially ordered sets need to be overcome. This is done by reducing the two
dimensional nearest ancestor search in tree T to single dimensional searching through a totally
ordered set. The essential idea is presented just below.

Let R(xJ denote the set (y: [x, y] e R), and let domain R denote the set (x:[x,y]e R). For
each xe domain R, define set S (x) = uyz R [y); for each z ES (x) define witness

w(x, z) =minimum y? x such that [y, z] r R
Then we can compute (4) by performing these two queries:

(5) i. qo=min/[xe domainR I x p I
ii. q2 =min/[y e S(qo) 1 y2p 2)

If either q o or q 2 equals 1, then v is the answer, otherwise, we obtain f (w (q o, q 2), q).

The two queries (5) reduce computation (4) to finding single dimensional nearest ancestors
and computing and storing sets $(x). Nearest ancestors in trees can be computed efficiently based
on the following idea. Let pre (i) and des (i) be the preorder number and descendent count of node i
in tree T. Then node i is an ancestor of node j iff pre (i): <pre (j) < pre (i) + des (i); also, if i and k
are both ancestors of j, then i is nearer to j than k iff pre (i) > pre (k).

Let Q be any subset of the nodes in T. Then for any node p in T, we can compute

(6) min/(x e Q I x •p)
whenever a solution exists by finding the node i in Q with maximum pre(i) such that
pre (i) 5 pre (p) < pre (i) + des (i). To facilitate this computation we can preprocess Q as follows.
For all i in Q define function find(pre (i))= i and find (pre (i) + des (i))= j such that pre (j) is the
maximum for which pre () pre ()+des(i)<pre(j)+des(j) and j e Q. Hence, (6) can be
solved by computing find(x), where x is the greatest element in domain find such that x 5 pre(p).

We can store domain find as either a red/black tree [8,23] or Willard's variant of the Van
Emde Boas priority queue[24,25] and obtain the following time/space bounds. Both data struc-
tures use space O (I Q I). Computing query (6) costs O (log I Q I) with red/black trees, and
0 (loglogl) with priority queues (where I is the number of nodes in 7).

- 14-

Based on the preceding analysis, we can perform query (5), (i) with 0 (1) space overall if we
store all of the domains of relations R for each binary function f appearing in T either as red/black
trees or Van Emde Boas priority queues. Query time is 0 0ogl) using red/black trees, 0 (loglogl)
with priority queues.

For query (5), (ii) we can store all of the sets S(qo) and their witnesses using a minor variant
of the persistent search tree of Sarnak and Tarjan [20]. Recall that a persistent search tree can store
a sequence To, TI, "", T, of sets, where To is empty and Ti is formed from Ti-I by element
addition or deletion for i = 1, ..., r. The data structure takes up 0 (r) space and can support the
nearest neighbor operation pred(i, x) = max / (y e Ti I y < x) in 0 (log r) worst case time.

In our application the sequence of sets is obtained by traversing the subsumption tree T in
preorder, adding R x) as we arrive at node x from its parent, and deleting R{x) when we go back
from x to its parent. Hence, the sets S(x) for x in domain R are included as a subsequence.
Witnesses are stored using stacks inside the search tree. Since each set R{x) is added and deleted
once in forming the sequence, the size r of our sequence is just I R I, which is also the number of
distinct patterns with root f appearing in PF. Thus, query (5), (ii) can be computed in 0 (logl)
time, and the cumulative space for storing persistent search trees for all the binary functions f
appearing in PF is just 0 (1). Thus, we have

THEOREM 2. Step (3) can be computed for binary Simple Panerns in 0 (log!) time and 0 (1)
space.

Extending the preceding idea to functions of arbitrary arity is straightforward.

Definition: A k-ary function symbol f is Very Simple if there exists a k-permutation g such
that for i=1,...,k-l and every two distinct f patterns A(xl,...,xk) and f(YI,...,Yt), x,!y,, j=l,...i
implies x5 , 1 it y~i 1"

Any Very Simple function f in a Simple pattern forest can be handled without a transition
map. Our algorithm runs in step time 0 (kmsax log 1) and total auxiliary space 0 (kmax 1) for all
Simple functions together, where kmax is the greatest arity of any Very Simple function appearing
in PF.

6. Conclusion
We believe that a deeper analysis and exploitation of the structure of pattern matching can

lead to further algorithmic improvements. In a subsequent paper we will report how to extend the
algorithms presented here to a more complex pattern language, which is used to perform semantic
analysis within RAPTS.

Acknowledgements We are grateful for stimulating discussions about pattern matching with
David Chase, Chris Hoffmann, and Ken Perry. We also thank the CAAP referees for helpful com-
ments.

References

1. Aho. A., Hopcroft. J., and Ullmui, J., Design aid Analysis ofComputer Algorithm& Addison-Wesley. 1974.

2. Borstler, J., Moncke, U, and Wilhelm, R., Table Coamrsaon for Tree Automata, Lehvstuhl fur Informatik IL.
Universitat des Sarlandes, 1987.

3. Burghardt. J., "A Tree Patern Matching Algorithm with Reasonable Space Requirements." in Proc. CAAP '88,
ed. M. Daudet and M. Nivat, Lecture Notes in Computer Science, vol. 299, pp. 1-15, Springer-Verlag. 1988.

4. Cai, . and Paige, R, "The RAFTS Trmsfonnational System A Proposal For Demcstraion." in F.SOP '90 Sys-
tems Ezlhibition. May 1990.

- 15 -

5. Chase, D., "An improvement to bottom-up afe pattern matching," in Proc. Fourteenth Annual ACM Symposium
on Principles of Progrmnming Languages, pp. 168-177, January, 1987.

6. Donzeau-Gouge. V., Huet, G., Kam, G., and Lang, B., "Programming environments based on structured Editors:
the Mentor Experience," in Interactive Programming Environments, ed. D. Barstow, H. Shrobe and E. San-
dewall, McGraw-Hill, 1984.

7. Givler, J. and Kieburz R, "Schema Recognition for Program Trnsformations," in ACM Symposium on LISP
and Functional Programming. pp. 74-85, Aug. 1984.

8. Guibas, L and Sedgewick. R., "A dichromatic framework for balanced trees," in Proc. 19th IEEE FOCS, pp.
157-184. 1978.

9. Hatcher. P. and Christopher. T., "High-Quality Code Generation Via Bottom-Up Tree Pattern Matching," in
Proceedings 13th ACM Symposium on Principles of Programming Languages. pp. 119-130, Jan. 1986.

10. Hoffmarn, C. and O'Donnell, J, "Patern Matching in Trees," JACM, vol. 29, no. 1, pp. 68-95, Jan, 1982.

11. Hoffmann, C. and O'Donnell, M.. "Programming with Equations," ACM TOPLAS. vol. 4, no. 1, pp. 83-112. Jan.,
1982.

12. Hudak. P.. "Conception, Evolution, and Application of Functional Programming Languages," ACM Computing
Survey, vol. 21, no. 3, pp. 359-411, Sep. 1989.

13. Huet, G. and Lang, B., "Proving and Applying Program Transformations Expressed with Second-Order Pat-
terns," Acta Informatica, vol. 11. pp. 31-55, 1978.

14. Knuth. D. and Bendix, P., "Simple Word Problems in Universal Algebras," in Computational Problems in
Abstract Algebra, ed. Leech, J., pp. 263-297, Pergamon Press. 1970.

15. Kosaraju, S., "Efficient Tree Pattern Matching," in Proc. FOCS '89, Oct., 1989.

16. Mauszynski, J. and Komorowski, H. J., "Unification-free execution of logic programs." IEEE Proceedings of
symposium on logic programming, Boston, 1985.

17. Pelegri-Llopm, E. and Graham, S., "Optimal Code Generation for Expression Trees: An Application of BURS
Theory," in Proceedings 15th ACM Symposium on Principles of Programming Languages, pp. 294-308, Jan.
1988.

18. Pfenning, F. and Elliott, C., "Higher-Order Abstract Syntax," in Proceedings SIGPLAN '88 Conf. on Prog. Lang.
Design and Implementation, pp. 199-208, June, 1988.

19. Purdom, P. and Brown. C., "Fast Many-to-one Matching Algorithm," in Proc. RTA '85, ed. 1.-P. Jouannaud. Lec-
ture Notes in Computer Science, vol. 202, pp. 407416, Springer-Verlag, 1985.

20. Samnak, N. and Tarjan. R, "Planar Point Location Using Persistent Search Trees," CACM. vol. 29, no. 7, pp.
669-679, July, 1986.

21. Sethi, R., Programming Languages: Concepts and Constructs, Addison-Wesley, 1989.

22. Standish. T. Kibler, D. and Neighbors, J. "The Irvine Program Transformation Catalogue," Univ. of Cal. at
Irvine. Dept. of Information and Computer Science, Jan, 1976.

23. Tarjw. R. Data Structures and Network Algorithms, SIAM. 1984.

24. Van Emde Doas .. "Preserving Order in a Forest in Less Than Logarithmic Time and Linea Space." IPL vol.
6, pp. 80-82, 1977.

25. Willard, D. "Log-Logarithnc Worst-Case Range Queries are Possible in Space O(N)." IPI. vol. 17, pp. 81-89,
1983.

